JOURNAL OF COMPUTATIONAL PHYSICS 107, 188-198 (1993)

Smoothed Particle Hydrodynamics Applied to
Relativistic Spherical Collapse

PatriCK J. MANN

Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6 A 3K7

Received April 24, 1991; revised October 11, 1992

The smoothed particle hydrodynamics method was applied in a
previous paper to a relativistic shock tube test problem, In this paper
the method is further extended 10 relativistic, self-gravitating spherical
collapse and compared directly with an equivalent finite element
mothod code. The particle code uses smoothed panticle hydrodynamics
for the fluid and approximates the gravitational potentials with finite
efements. The finite element code uses a simiiar potential salver, but it
evolves fluid quantities with finite elements. The direct particte method
was unstable at the centre, the surface, and during the formation of
horizons, but a Galerkin weighted residual technique successfully
solved all these instabilities. In direct comparison with finite elements
smoathed particle hydrodynamics produced results which were
generally smoother (for the same number of particles and nodes)} but
otherwise in good agreement. The smoothed particle hydrodynamics
method was certainly able to model this self-gravitating fluid. © 1993
Academic Press, ing.

i, INTRODUCTION

The smoothed particle hydrodynamics method (SPH)
of Lucy, Gingoid, and Monaghan [9, 13] has become a
widely used method in the study of self-gravitating fluid
bodies. Monaghan and Lahy suggested an extension to
relativity in [14], and 1 used this method, together with a
further extension to model a one-dimensional shock tube
£ 107. That shock problem did not include gravity, but itdid
show that SPH was a viable method for fluids in special
relativity, The next stage was clearly o inchude pravity,
This paper will report on my first tests with SPH for a
sclf-gravitating, relativistic fluid.

1 have chosen Lo model a spherically symmetry relativistic
fluid. My approach is to approximate the fluid with SPH,
but to model the gravitational potentials with a finite
element method (FEM). Einstein’s theory is a geometric
theory so the particle-particle forces of Newton’s theory
{and classical SPH) cannot be used. It may be possible to
use SPH to approximate the gravitational terms, but in
relativity the metric can evolve dynamically even in the
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absence of matter. Therefore the ftuid particles would have
to be augmented with gravitational “particles” moving
along their own geodesics. [ have not done this.

Grid-based potential solvers have also been used in
Newtonian SPH (sce [15], for instance), but most codes
now use the specifically particle-particle tree algorithms.
Unfortunately these powerful techniques cannot be applied
in refativity. The Newtonian potential solver of [15] uses
finite difference methods. [ have preferred the FEM because
the FEM interpolation can be used to interpolate back to
the particles in a consistent manner.

The particle-in-cell method has been used by [4], but this
method does not include the underlying “no grid” basis
of SPH. :

An SPH approximation can be viewed in two ways: as a
set of numerical interpolations of the functions defining a
physical model and as a specific physical model using
“particles” of fluid. The second approach is that of classic
SPH and requires the use of particles which possess physical
propertics. For instance, [8] uses specifically covariant
particles.

1 have preferred to use the first approach, In this case
the physical quantity is the interpolation, and not the inter-
polation basis (the particles). Therefore I can write the
relativistic fluid equations directly as differential equations
and apply SPH as a method of discretizing these equations.
This ensures that the metric and coordinate choices
required in numerical relativity do not appear explicitly in
the particle {interpofation basis) choice,

This SPH method is similar to a finite element approach
in which the elements can now overlap and are defined only
by a size and a position. The fundamental SPH advantages
of freely moving particles with no grid are preserved.

I will first write the equations for relativistic coliapse and
then introduce the approximations which are to be used by
SPH and FEM. Next the finite element solution for the
gravitational potentials will be outlined, and then a2 more
detailed exposition of the SPH discretization of the fluid
equations will be made. Unfortunately early tests showed
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that the discretization which I used in [ 10] was not abie to
handle the coordinate singularity at the centre, and it also
showed instabilities near the surface. Therefore a significant
meodification is made by introducing a weighted residual
SPH method. This new method is first tested with the
relativistic shock tube and some results presented.

Further tests use the complete code with various choices

of initial conditions and are compared directly with a FEM
code. There are three general scenarios: static evolution,
complete collapse, and collapse-and-bounce. Some typical
runs from each of these are presented and discussed.

The conventions of Misner, Thorne, and Wheeler [12]
are used in this paper, and the units take the gravitational
constant G and the speed of light ¢ to be one.

2. THE EQUATIONS

The metric is the radial gauge, polar sliced version,

ds*= —B*1 =2m/r)dr* + (1 = 2m/r) "' dr’

+ r*(d6* + sin® 0 dp*) (1)
where r is the Schwarzschild radial coordinate. The
quantities m and B are functions of r and ¢ Note that
 —g=r’sindAB

The energy-momentum tensor is given by Tf=
(p+p)Yu,u’ + pgf, where p is the pressure, p is the total
energy density, and u* is the fluid four-velocity, For con-

venience define p, to be the rest energy, e to be the internal
(thermal) energy, and w to be the relativistic enthalpy. Then

p=pote {2)

and

w=1{(p+p)po- (3)

The equation of state is assumed to be polytropic,

p=(y—1)e 4)
which gives

w=1+7ve, {3)

where ¢ = ¢/p, 18 the specific internal energy.

The fluid four-velocity u” is the vector (', u”, 0, 0) due to
the symmetry, and for convenience define the three-velocity
V=u"fu'

Conservation of rest mass (pou*).,=0 then gives the
equation

D,,+;13(r2VD)!,=O, (6)
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where D = Bu'p,. The quantity Bu'=./— gu'/(r*sind)
appears regularty so define

A=Bu', (7N
in which case
D=Ap,. (8)

The fluid equations are derived from T4 s =0 with the
result that

S+ (r’VS),=—r’Bp ,—wDA (rza,(l — 2mjr)

w2 +2Z3(1 =2m/r)
B ( w? + Z2(1— 2mjr) ) o _"""})

(9

and
r’E + (r'VE),= —p(r’4 ,+ (r’V4) ), (10)

where

S=wDu,=T! (11)
E=Ae (12)

and
Z=S5/D. (13)

Combining these quantities
normalization #*u, = — 1 gives

and using the velocity

V=2ZB((1 =2mir)i{w?+ Z*(1 —2m/r)))~'2  (14)

1 —2mfr 2
A:B(Bz(l—zm/r)z—rﬂ) (13)
and
&= E/D. (16)

Einstein’s equations are particularly simple in this
coordinate system:

. _47"2( 1 2mfr )lﬂ
T w?+ Z2(1 —2mjr)
x{w(D+ E)+ DZ*(1 —2m/r)) (17)
%= drrD((1 = 2mfr)(w? + Z*(1 = 2mfr))) ~ "2
x (w24 2Z*(1 —2m/r)). (18)
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There are time-dependent versions of these equations but
only the above two are required (consistency is guaranteed
by the Bianchi identities). In spherical symmetry these
constraint equations are particularly simple, and there is no
necessity for the use of the evolution equations.

The boundary conditions are:

Centre: r=0,m=0,m,=0,B8,=0,5=0,V=0

(19)
B=1,p,=0,e=0.

Surface:

The Einstein equations (17) and (18) can be inserted in
Eq. (9) to derive

D
1—=2mjr
( w2D2 42851 —2m/r)
X
VWD 4+ S (1—2mjr)

rlS‘!+ (TZVS)..P =—B (rzp,r +

)(m+4nr3p)).
(20)

3. THE APPROXIMATIONS

Useful descriptions of classic SPH can be found in [5 or
7]. and details of the extension to relativity can be found
in [10, 147]. The relativistic “density” D is analogous to the
Newtonian density so the SPH approximation is written

n

Dir, )= Y my(t) Wir—r,(t), b, (£),

i=1

{21)

where m,(¢) is the mass of “particle” j (equivalent to the
rest density p, integrated over a suitable volume of the
three-slice) and #,(¢) is the position of the particie. There are
n particles. C

The kernel or smoothing function W{(x, &) gives the shape
of the particle as a function of position x and size A
Generally W is assumed to be symmetric around x =0, but
the smoothing length 4; is allowed to vary from particle to
particle and is also a function of time.

However, there is a symmetry in this problem and there-
fore some thought has to be given to the specific choice. Let
W, (x, h) be the standard cubic spline kernel of Monaghan
and Lattanzio [157]:

1—(3/2) |x/h|? + (3/4) |x/h|,

21 O<|x/hl <1
A (1/4)(2— |x/h]),
0, otherwise.

W5, h) <phi<2 @

A first attempt took Wix, h)=W,,(x, k) and then
included a reflection at the centre, but this invariably
resulted in large oscillations in the density approximation at
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the centre. A far better approximation can be obtained by
writing antisymmetric and symmetric combinations respec-
tively:

Wy —rnhy=W r—r, hrj_ Woal—r—r,h)

2
W‘”(r—r!-, hy=Wo(r—r, b))+ W (—r—r, k). )
This ensures that symmetric functions such as the density
will be smooth at the centre, and antisymmetric functions
such as the momentum will vanish at the centre. Note that
the symmetrization is effective only within 24 of the centre.
Farther out, both kernels are identical to W,,,.
These combinations are normalized to ensure that

surface
J- 4nr*W O (r —ry, b)) dr=1 (24)
0

and similarly for W), For particles within 24 of the centre

there is a position-dependent contribution because the

integral stops at r = 0, but this is straightforward to include.
For convenience define the short forms:

W)= W s —r,, h)

(25)
Wy =W —r, ).

Various time derivatives of W'¥ and W will be
necessary in the following discussion. These always include
the requisite contributions from #,(t) and r;(¢) ensuring that
any choice of position and smoothing length is atlowed.

The symmetric quantity I} is then approximated by

Dir, t)= i m(t) W(r).

i=1

(26)

The symmetric quantity £ can be approximated by the
mass-weighted approximation

n

E(r,0)= Y my(1)eg(1) W}”(r) (27)
i=1
and the antisymmetric quantity .S by
S(r, 1) = ; m{t) Z(t) W(r) (28)
(5 ) Z g J j £l

i=1

where ¢,(¢) and Z,(r) are expansion coefficients which will
be computed during the evolution,

As mentioned in the Introduction these are not standard
SPH expressions, and the kernel is not covariant. The coef-
ficients m;, Z,, and ¢; define the interpolation and will be
evolved, but only the complete interpolations D, S, and £
are used in the differential equations. Note, for instance,
that g, 3 E(r;)/D(r;), in general.
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The following definitions will be useful in the derivation
of the SPH evolution equations:
D,=D(r),  E=Er) S=Sr) (29
The two metric quantities m and B are approximated on
a finite element mesh with cubic Hermite splines:

mr, t)zz(mlelj(r)+m2jN2j(r)) (30)

and similarly for B. The shape functions N;{r) and N,,;(r)
are chosen to ensure that

omir, 1)
“ar )r—r}"’_mh’ (31)

where r{® are the positions of the grid nodes. Equations
(17} and (18) are constraint equations, so in this spherically
symmetric case the mesh can be defined independently on
each time slice and there is no nced for explicit time
dependencies.

This completes the description of the approximations.
All other quantities can be derived from D, S, E, m, and B
with the help of the definitions in Section 2. Interpolations
between grid and particle are performed by evaluating the
SPH approximations (26), (27), and (28) at grid positions
and evaluating the FEM approximation (30) at particle
positions. In particular, it is convenient to define

m(r'& )y=m,, and (

= plr:) (32)

from Egs. (14) and (4).

4. THE FEM CONSTRAINT SOLVER

The two Einstein equations (17) and (18) are discretized
by a two-point weighted residual method and then solved
from the centre outwards (see [117] for details). The two
equations require Z, D, and E on the grid. The quantities .S,
D, and E are computed directly from the SPH interpolation
and then Z=5/D is immediately calculated on the grid
nodes. Linear interpolations of Z, D, and E are then used by
the FEM solver.

I have tested more explicit (and slower ) methods in which
Z is computed directly in the FEM discretization, but there
is no significant difference in the results.

5. THE SPH TIME EVOLUTION

In [10] T tested a simple time discretization (for a 1D
Shock tube) which inserted the SPH approximations
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directly into the evolution equations (6), (9), (10) and
collocated them at particle positions. For the spherically
symmetric case this results in 1/D and 1/r terms which
become singular at the surface and centre. A careful choice
of particle positions ensures that these terms stay finite,
but even in a simple Newtonian test case the centre and
surface approximations become unstable. The same
behaviour occurs when other coordinate singularities (ie.,
1 —2m/r = 0) appear, so a better method is required.
Similar problems occur with FEM simulations, and they are
solved by using a weighted residual method with a factor
r2D included in the weight. The same approach can be taken
here.

Benz {2] has derived the standard SPH from a weighted
residual approach which used Galerkin weights. This nice
method resulted in a more consistent version of the energy
equation which solved some numerical problems concerned
with negative internal energies. However, he did not include
different weights.

First write the typical equation (9) in the form

r’S ., =—(r*vs),— (33)
Now apply the weighted residual method,
[P )W dr=—{ (g +02vs),) WP, (34)

where ail quantities are now the SPH or FEM approxima-
tions as necessary.

To preclude any artificial vanishing of the weights I
have used the symmetric kernel as the weight function
everywhere.

These expressions are, in general, not analytically
integrable, so a numerical quadrature must be used. An
obvious choice is to use quadrature points at the particle
positions r,,

n

Y (g, +V,(rPVvSsHwe

i§ o
j=1

i P W= — (35)

where g;=g(r), W{'=W(r,—r,h), and V, is the
partial derivative with respect to r evaluated at r;.
The left side of {35) can be expanded to give

n dZ "
h (—kmk WS 2 wg.;>)
=1

= dm
=—ZﬁW$(ZZ& *W@+kwm»
Ji=1

- ¥ (g+V, (Vs we

g

(36)

j=1
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where

Wi =ow ' o1 (37)
cvaluated at r=r, (and similarly for W{’). These
derivatives include the particle velocity r,, and the
smoothing length variation 4, ,.

Note that Z, and m, are functions of r only. If the particle
velocity is the fluid velocity then the derivative is indeed a
Lagrangian derivative, but this will not be true in general.

The left side of this equation is a matrix expression of the
form A dz/dr, where z is the vector of Z,. The matrix A is
sparse because Wf;’ is localized, but its structure is variable
as particles overlap during the evolution. To avoid any
matrix solvers 1 have applied the FEM technique of
condensation or mass-lumping ([1], for instance)} and
approximate:

" dZ n
> (% %uzzwwmﬁ

i=1

L4z,

?Wf“ Z m Wi (38)
=dr = '
Define
LIS Y ZWD Y mp. (3)
j=1 k=1 i
Then from (35) and (36)
d
—Z. =%, 40
p ; (40)

where

i—1

5 dmk a a
rng.l(z Z, ( W +m W )))

+ i (gj+Vf(”2VS)) WE;))/LEG)

i=1

(41)

which is an evolution equation for Z..
Similarly, the mass conservation equation (6) can be
discretized with a weighted residual method to produce:

(42)

where

M= _(Z ry W Z m W+ Z V{r’vD) W‘S)>/Lg”
J

=1 k=1 j=1

(43)
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and

n n
(s) = 2 (5) (+)
Lr' =erWl'j kawkj.

k=1

(44)

=1

Unfortunately Eq. (10} for E includes a time derivative of
A on the right side. The quantity 4 can show extremely non-
linear behaviour (horizons, where 1 — 2m/r — 0), so various
specialized forms of 4 have been used (see [3 or 61, for
instance). I will be using a predictor~corrector evolution,
where A can be approximated with the most up-to-date
information available, so 1 have decided to use a simple
scheme with

DAY _ Aj— AL
dr At

where D/dt is the derivative along the particle track and
the superscript indicates the time slice (from time '~' to
time £°}.

Then the right side of (10) evaluated at a particle position
can be written as

(45)

DAN'
_— 4
7 (57) + e (46)
where % = — p,r: and
dr
{ng-'Pk(’in("k k)vk
ALY,V + 2 VkAk). (47)

The weighted residual method applied as for Z then gives

de; id DAN
de; _ (24N o) e
x @+(j§lgi,(dt)j Wy )/L . @)
where
&= ﬁ(z r; Wf;’( Y elm W)
S k=1
- W;;)))Jr 5 g;,wg;*) /LE”. (49)
=1

There are two remaining evolution equations: for r,
and /;. For this first attempt I have chosen the simple
Lagrangian version for particle positions:

iy

=V (50)
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The smoothing tength should be chosen to keep a con-
stant number of particles within range of any given particle.
There are a number of possible variations (see [27), most of
which perform well with, for instance, shock tube tests
{Newtonian and relativistic) and other Newtonian simula-
tions. I have found that these standard techniques produce
unstable oscillations when shocks move out towards the
surface of some of my spherical simulations. A smooth
evolution is required, with a scale approximately equai to a
smoothing length. The following formula has proven to be
extremely robust:

1 dh, 1 & i
hjE: ) z mNV VW, (51)
This is an approximation to
1 dh 1 dD
—— 52
hat " "Dar (52)

A value of 1 for the proportionality constant o, seems to be
sufficient. Values closer to one can in practice lead to very
small # where only one or two particles overlap.

6. ARTIFICIAL YISCOSITY

I have included a simple artificial viscosity to smooth
shocks. I experimented with the Baker smoothing technique
[1] introduced in [ 10], but unfortunately this method was
never able to smooth shocks which approached the surface.
Such shocks amplify as they move into the low density
regions near the surface, and the Baker smoothing was
insufficient to stop a runaway oscillation at the surface. This
is unfortunate as the Baker smoothing gave significantly
flatter and sharper results with the shock tube tests.

It is possible to use an artificial viscosity near the surface
and Baker smoothing in the body of the “star.” However,
this method was not rebust, as model-dependent fine tuning
of the position and type of the crossover was required.

Therefore a standard artificial viscosity {see [3, 7], for
instance} has been incorporated as follows:

Replace p in T, with p + ¢, where

"

glr,0)= 3, m(}g;W(r) (53)
i=1
. [Kaedr) O+ K, 07, if V,¥<0
4= {O, otherwise (34)
and
Q=L +e(r,) b; [V, V), (53)
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¢, is the sound speed. The magnitude of the artificial
viscosity is controlled by the parameters K, and K,
A suitable value for both these parameters is one.

7. A COMPLETE EVOLUTION STEP

A typical constraint sweep starts with particle quantities
Z,, &, and m, and proceeds as follows:
« Set up a grid.

¢ Calculate D, E, and § on the grid with the SPH
approximation,

¢ Calculate Z on the grid from Eq. (13).

+ Compute my;, m,, By;, and B, from the FEM
discretization.

» Calculate m and B at the particle positions with the
FEM approximation.

The evolution is a second-order predictor—corrector:

1. Predict.
(a} First-order evolution to next time step:

r=r AV
r=mi AT
Zi=Z! "+ A g
ei=g; "+ A gt
LAY (FWELEY! (DA) .
i=1 dt /;

(b) A constraint sweep with the predicted values on
the new time slice,
2. Correct.
(a) Calculate S, D, and E at particle positions.
(b) Calculate Z, ¥, and 4 from (13), (14), and (15).

(c) Evolve r, from the centred difference version of
Eq. (50) and evolve A, from the centred difference version of
Egq. (51).

(d} Calculate .# from (46) and evolve m:
mi=mi~ 4 LA (MIT + MY).

(e)
and E;

Calculate 2’} and &7 from (51), (44) and evolve Z

Zi=Z7'+iaxi T+ 3
gj=e; '+ 14KE + 81)

n DA.!
At FH =) (w®y (),
* (El () o)
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(fy A constraint sweep with the corrected values on
the new time slice.

(g) Calculate ¥ and A from (14) and (15) and evolve
r;and A, again (see step (c}).

Some observations are in order at this point. m, is
separately evolved before Z; and ¢, because such a scheme
gives much better results in a shock tube test. Step 2{g) is
required to ensure that an up-to-date value for 4 is always
available for the & evolution. Simple geodesic motion tests
show this to be a necessary part of the predictor—corrector
scheme.

The ¢ evolution includes D A4/dr as a centred second-order
approximation, but note that the multiplier &7 is not
averaged in this implementation because its value on the
previous time slice is not stored.

8. INITIAL DATA

The variables m, B, p,, and ¢ are given initially on the
nodes of a finite element grid, with the velocity assumed
to be zero (a stationary initial configuration). Particle
positions are then given. In this paper the particles are
always evenly spaced.

The smoothing length is then calculated as a multiple of
the interparticle spacing. Experiments with the shock tube
[107] showed that a multiple of two was generally required.
Smaller / resulted in poor approximations to the fluid forces
between particles.

Next m, is chosen to reflect the given density on the grid.
I use a Newton-type iteration,

) = m®9 4 y(9D(r) = D(r )Y W

ii *

(56)

where #'D(r,) is the density variable D at particle positions
computed from the finite element approximation and *'D
is the equivalent SPH approximation computed using the
previous estimate of m,. I have included a relaxation
parameter ry = 0.5 which ensures convergence.

This scheme converges quickly for particles within about
2k of the surface. Near the surface the SPH density reflects
the shape of the kernel due to a paucity of particies and
therefore cannot approximate the given density accurately.

A similar iteration is required to give ¢;, resulting in
a complete data set on the particles. The evolution
interpolates from the particles onto the grid used by the
constraint solver so no initial data is required on the grid.
Note that there is also no requirement that the input data be
on the same grid as the constraint sclver. I usually use some
large number of nodes on the input grid ( ~ 500) to ensure
accuracy in the initial model.
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9. THE SHOCK TUBE TEST

The Riemann shock tube (non-gravitating ) is a good first
test for SPH. Sod’s standard Newtonian version [17] has
been extensively used by both SPH (see [5 or 7], for
instance) and FEM (see [1]), but the relativistic case has
been principally modelled with finite difference methods
(see [3, 6]). | reported on an extensive set of tests with SPH
in [10], but the methods used did not include the weighted
residual integration. However, the weighted residual
method has given very similar results. The analytic solution
has been derived in [18].

Figure 1 is an illustration of a typical shock tube run. The
fluid in the tube is polytropic with y =2, and has the initial
conditions: :

Left side Right side
Density p 8.0 20
Internal energy € 1.0 0.0
Smoothing length # 23 x 1073 Same  {57)
Mass per particle m, 9.4x107*  23x107?
Boundaries —-03 0.3
Number of particles 256 256

Note that the particles are evenly spaced with a varniable
mass which models the initial density. Evolution proceeds
to a time ¢=0.25. The artificial viscosity parameters are
K, =land K,,=1

Generally the fit is good, with rest mass conserved to

Rest Density Internal Energy

0.0 0.3
Pressure

0.0 0.3 -0.3
Three-Velocity

-0.3

FIG. 1. The relativistic shock tube with conditions given in (57).
The density p,, three-velocity V, specific internal energy ¢, and pressure p
are plotted.
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0.3%. The velocity plateau is overestimated, which is
characteristic of all my tests, and this results in a small dis-
placement of the contact discontinuity. The internal energy
shows a slight spike on the contact discontinuity, which is
also characteristic of these particle methods. The shock is
rather smooth, but decreasing the artificial viscosity results
in post-shock oscillations.

10. FURTHER TESTS

The complete code can be tested on static configurations,
on pressureless collapse, and by comparing to a different
code. T have constructed a separate FEM code to perform
the comparison. This code approximates D, ¢, and Z (not E
and S) on a spatial FEM grid with linear splines, and then
it evolves the nodal values with a second-order predictor—
corrector similar to the one used for SPH. The constraint
solver is identical to the SPH/FEM constraint solver except
that ¢ and Z are used as basic variables. Smoothing is
accomplished by including an artificial viscosity similar to
Eq. (53).

The first tests of the complete code used as initial data
a FEM solution of the Tolman-Oppenheimer-Volkov
(TOV)equations describing static, spherical configurations.
In these models I have taken p=p}, and have para-
meterized the models by the central enthalpy.

In the following discussion various time scales are used.
The times given on the graphs are normalized as follows:
Coordinate time is normalized by the coordinate time
required for a test particle initially at the surface radius to
fall half the distance to the event horizon in a Schwarzschild
background {mass equals the mass of the initial configura-
tion). Proper time at the surface is normalized by the proper
time required by the test particle to reach the event horizon.
Proper time at the centre is normalized by the proper time
required for a pressureless (freefall) collapse to reach infinite
central density.

Both the SPH and FEM can evolve initially stable
models quite satisfactorily. Unstable models drift slowly
away from equilibrium as numerical errors build up.
Figure 2 illustrates a typical run with data:

wicentre)=1.35] SPH: number of nodes = 64,
number of particles = 128

FEM: number of nodes = 64.

(58)
y=35/3

This is a marginally stable polytrope, and, indeed, the
model shows a slow evolution away from the initial model.
The FEM model slowly contracts, with an increase in the
central rest density of about 4% after 15 freefall times
{proper time to infinite density at the centre). The SPH
model expands with an equivalent 4% decrease in the

Gravitational Mass Conservation

SPH resultls

c.0 1.0 2.0 ) 3.0

-------- FEM lresu] Ls

Proper Time at Surface (freefall units)

FIG. 2. Conservation of metric mass m(r} at the surface for the static
conditions given in {58).

central rest density. Surface position is slightly better,
with the SPH model expanding by 3 % and the FEM model
decreasing by 1%. Metric mass m is nicely conserved
(Fig. 2), and the change in the total particle mass (rest
mass) is about the same.

This configuration should be stable, but clearly both SPH
and FEM have pushed the marginally stable model over
into an unstable regime, although it is interesting to note
that SPH forces an expansion, while FEM forces a collapse.

Higher resolution improves the SPH runs. With 256 par-
ticles (64 grid nodes) the SPH simulation is more stable
with a surface expansion of about 0.8%. However, the
metric mass conservation is about the same. This suggests
that the FEM grid (the same mesh size in both runs) is
giving most of the error in metric mass conservation, and,
indeed, the particle rest mass is better conserved than the
metric mass.

The pressureless collapse of a homogeneous sphere has an
analytic solution given by the Oppenheimer-Snyder metric
[12]. An explicit transformation to poiar slicing is aiso
available [ 167, so a comparison to the analytic solution can
be made.

This is a very difficult evolution for SPH because the
singular behaviour in the density appears at the surface.
However, except for a smooth tail at the surface, SPH gives
excellent results. A typical evolution used 256 particles and
64 grid nodes and evolved until the central value of B (the
lapse function) had decreased to about 0.5% of its initial
value (in the units of [16], about = 50 M). At this point m
and B were approximated to within 2% of the analytic
solution.

The density clearly showed the SPH smoothing with the
surface density spike turning over within 24 of the surface.
At this point the density had reached approximately 50 % of
the maximum surface value in the analytic solution.

A more realistic pressureless collapse can be modelled by
taking an initiaily static configuration and artifically setting
£=0 (p=0). The constraint equations for m and B must be
solved again to obtain a consistent data set, but this can be
done rather simply by using the FEM constraint solver on
the initial data grid.
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FIG. 3. Particle tracks for a 256-particle, 64-node pressureless collapse
(59). Every cighth particle is plotted.

All such pressureless collapses are similar, and indeed
both codes produce similar models. A typical run starts with
the w=1.35, y = § model of the static test and sets e=0. As
with the Oppenheimer-Snyder solution there is freefall
collapse to a black hole, with the evolution “stepping” as
fluid elements reach their respective horizons. The overail
characteristics are evident in Fig. 3, where some particles
are tracked during their evolution.

The following parameters were used to make com-
parisons:

SPH FEM
64 nodes 64 nodes
256 particles
(39)
8,=03 6.=03
K= 1.0 K, =05
K,.,=10 K,,=05

Note that a larger artificial viscosity is required for SPH.

Gravitational Mass Conservation
T T ¥

Dm(%)

- SFH resulrs .
0.0 0.1 0.2 0.3 0.4

zum——s FEM resulus —

Proper Time at Surface (freefall units)

FIG. 4. Mass conservation for the collapse of Fig. 3. The FEM run
crashes when the surface reaches its horizon (at r = 0.47) but the smoother
SPH continues on with a small spike in the mass.
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FIG. 5. Fluid tracks from the FEM code for the perturbed data of
(60). There are 256 nodes and every 17th particle is plotted.

Surface oscillations in ¥ can build up as the horizon is
approached when smaller amounts are used. This is to be
expected because the density and velocity are poorly
approximated near the surface, where there are fewer
particles.

There is excellent agreement between the two codes. The
timescales are slightly different, with the FEM taking about
2% longer (proper time) for the surface to reach its
Schwarzschild radius. A similar difference is evident in the
lapse and central density.

As with the Oppenheimer-Snyder collapse the density
spike (now at the centre) is smoothed out. Both methods
show this behaviour, but the SPH spike is only about 20%
of the FEM spike. The FEM, even though it uses fewer
nodes (by a factor of four), has given a much better density
spike.

The FEM conserves mass a bit better than SPH, but both

Particle Tracks
T T

Coordinate Time (freefall units}

1 1 “
0.0 0.4 0.8 1.2 , 1.6
x10

Radius (Schwarzschild units)
FI1G. 6. Particle tracks from the SPH code for the perturbed data of
(60). There are 256 particles and every sixth particle is plotted. This plot
should be compared to the FEM results of Fig. 5.
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are excellent (Fig.4). Both codes were run until they
crashed with 1 — 2m/r < 0. The smoother SPH run success-
fully negotiates the final approach of the surface to its
horizon, although a spike in mass conservation is evident at
about r = 0.47 in Fig. 4. The FEM code crashes at this point.

Further tests used various perturbations of the internal
energy. There are generally two types of behaviour: Hard
equations of state, with y above about 3, give smooth
{(homologous) behaviours which are well modelled by both
SPH and FEM, while softer equations of state result in
bounces and shocks which are modelled up to the resolution
inherent in the method.

These bounces almost invariably occur near the surface as
shocks accelerate down the density slope. In these low den-
sity regions I would not expect SPH to perform accurately,
but, in general, resolution seems to be the most important
problem. A model which typifies these observations starts
with a y = $ polytrope and modifies the internal energy &
according to the formula

g™ = g°1(1 + de(r)), (60)

where Ae(r) is a cubic spline interpolation which takes the
values 0.2 at the centre, (0 at 30 % of the surface radius, and
—0.4 at the surface. Therefore, the internal energy is
increased near the centre and decreased near the surface.

The overall behaviour is given in Fig, 5 which shows the
fluid tracks from an # =256 node FEM run. The surface
regions bounce violently off an expanding central core, and
the surface then escapes at high velocity {about 50 % of light
speed ). However, the material just within the surface rever-
ses its outwards motion and again fails onto the core.
Another, although softer, bounce occurs, and this material
expands a bit and then falls back down. At this point the
central regions have coilapsed to form a black hole.

Note that this behaviour is extremely artificial. It arises
from a peculiar choice of initial conditions and is not

Surface Position
-

SPH results
L X 1

0.0 6.1 Q.2

-------- FEM results

Radius (Schwarzschild unics)
-
he]
L%

Proper Time at surface (freefall units)

FIG. 7. Surface position for the evolutions of Fig. 5 and Fig. 6. The
solid line is from the 256 particle run of Fig, 6, but the solid line is from a
64-node FEM run.
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intended to reflect any particular physical evolution. It is an
excellent test of the method,, however.

The extended outer envelope caused problems to the
FEM, with negative densities appearing. An artificial
viscosity of K, = K, =2 was required to smooth out such
low density perturbations.

An equivalent SPH run, with 256 particles, is illustrated
by Fig. 6. The initial collapse and bounce is in agreement
with SPH, but the bounce is much softer. The surface
material does not immediately escape, but slows down and
eventually collapses back onto the core. The secornd bounce
is sufficiently strong to push the surface completely out. The
interior regions are correctly collapsing to a black hole,

The surface position of the 256-particie SPH run is com-
pared to a 64-node FEM run in Fig. 7. At this low FEM
resolution the initial bounce is almost identical in both runs,
with eventual recollapse and seccond bounce. The density
near the surface is relatively small, but there are detail
differences between SPH and FEM so the second bounce
is only comparable in a qualitative sense.

The centre shows a difference in time scale (Fig. 8). The
SPH produces a slower collapse (proper time) which again
seems to reflect the extra smoothing inherent in the method.

Both SPH and FEM conserve mass well, with both runs
showing a sudden increase when the black hole forms. This
increase approached 5%, but it is probably due to the very
few nodes (particles) which are left outside the horizon.

The bounces were rather smooth in both SPH and FEM.
The FEM generally required about five nodes across the
“shock,” and there was no indication of oscillations before
or behind the shock. The large viscosity could, however,
result in drastic overestimates of the internal energy on the
last two nodes as the zero-density problems mentioned
previously were smoothed away.

The SPH shocks extended over about 20 particles, and
with the smaller viscosity (K,, = K,,=1) they developed
oscillations just behind the shock as the shock reached the
surface.

Rest Density at Centre

N SEH results R FEr resulss

0.0 0.3 0.6 i 0.%
x10

Proper Time at Centre (freefall units)

FIG. 8. Central rest density for the Fig. 6 SPH run (256 particles)
compared to the Fig. 5 FEM run (256 nodes).
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11. CONCLUSIONS

The modified SPH technique has successfully modelled
fully relativistic collapse, albeit with the introduction of a
grid for the evolution of metric quantities. The consistent
use of density-weighted quantities S and F for the basic
variables is important, as is the weighted residual approach
which this consistency allows. These are necessary for the
success of the method in spherical symmetry because of the
coordinate problems. Coordinate problems are inherent to
relativity so 1 expect that the use of a weighted residual
method will always be necessary.

Kheyfets e al. | 8] have extended SPH to relativity using
a completely covariant approach which may alleviate these
coordinate problems. This approach has not yet been
applied to self-gravitating fluids.

In direct comparison with FEM the SPH has performed
well in situations where there is high density and gravity is
tmportant. In regions where resolution is important, SPH is
too smooth and can produce the anomalous results noted in
the previous section. Experimentally it seems that SPH
requires about four times as many particles as the FEM
requires nodes. This number probably follows from the use
of a kernel which extends over about four particles on ¢cither
side. Smaller smoothing lengths resulted in poor shock tube
simulations.

This factor of four also results in longer run times because
more particles appear in the support of a particle basis
function {(kernel} than do nodes in the support of an FEM
basis function. There is also some overhead imposed by the
tests for neighbouring particles. However, for clarity and
test purposes I have not included such algorithmic
improvements as particle binning. Since there is no global
gravitational particle—particle sum in my code (gravity is
computed with the FEM grid), particle binning should
result in computational times which increase linearly with
the number of particles.

Note alsp that much of the three-dimensional nature of
SPH is inherent in my code, while the FEM codes uses
more specialized (to one dimension) constructs. Therefore
relative efficiency is rather difficult to estimate.

The SPH may be naturally three-dimensional, but | must
point out that the metric is very specifically spherical. Less
symmetric metrics result in many more metric potentials,
but more importantly, they give evolution equations and
gravitational radiation. The FEM is, in theory, capable of
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handling such problems, but no attempts in this direction
have yet been made.

1 conclude that the SPH method has performed ade-
quately in comparison with a completely FEM code. SPH
has done well in the dense, gravitationally important central
regions, but suffers from a lack of resolution when small
scale fluid phenomena (shocks) are to be modelled. SPH is
certainly able to cope with a self-gravitating, relativistic
fluid and I would expect an improvement in performance if
less symmetric situations are considered.
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